Spectrum reconstruction from dose measurements as a linear inverse problem.
نویسندگان
چکیده
There are three ways to determine the spectrum of a clinical photon beam: direct measurement, modelling the source and reconstruction from ion-chamber measurements. We focus on reconstruction because the necessary equipment is readily available and it provides independent confirmation of source models for a given machine. Reconstruction methods involve measuring the dose in an ion chamber after the beam passes through an attenuator. We gain information about the spectrum from measurements using attenuators of differing compositions and thicknesses since materials have energy dependent attenuation. Unlike the procedures used in other papers, we do not discretize or parametrize the spectrum. With either of these two approximations, reconstruction is a least squares problem. The forward problem of going from a spectrum to a series of dose measurements is a linear operator, with the composition and thickness of the attenuators as parameters. Hence the singular value decomposition (SVD) characterizes this operator. The right singular vectors form a basis for the spectrum, and, at first approximation, only those corresponding to singular values above a threshold are measurable. A more rigorous error analysis shows with what confidence different components of the spectrum can be measured. We illustrate this theory with simulations and an example utilizing six sets of dose measurements with water and lead as attenuators.
منابع مشابه
Boundary temperature reconstruction in an inverse heat conduction problem using boundary integral equation method
In this paper, we consider an inverse boundary value problem for two-dimensional heat equation in an annular domain. This problem consists of determining the temperature on the interior boundary curve from the Cauchy data (boundary temperature and heat flux) on the exterior boundary curve. To this end, the boundary integral equation method is used. Since the resulting system of linea...
متن کاملOvercoming the ill-posedness through discretization in vector tomography: Reconstruction of irrotational vector fields
Vector tomography methods intend to reconstruct and visualize vector fields in restricted domains by measuring line integrals of projections of these vector fields. Here, we deal with the reconstruction of irrotational vector functions from boundary measurements. As the majority of inverse problems, vector field recovery is an ill posed in the continuous domain and therefore further assumptions...
متن کاملOn the nonnegative inverse eigenvalue problem of traditional matrices
In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.
متن کاملTracking Solutions of Time Varying Linear Inverse Problems
The reconstruction of a signal from only a few measurements, deconvolving, or denoising are only a few interesting signal processing applications that can be formulated as linear inverse problems. Commonly, one overcomes the ill-posedness of such problems by finding solutions which best match some prior assumptions. These are often sparsity assumptions as in the theory of Compressive Sensing. I...
متن کاملCompressed Sensing, ASBSR-method of image sampling and reconstruction and the problem of digital image acquisition with lowest possible sampling rate
The problem of minimization of the number of measurements needed for digital image acquisition and reconstruction with a given accuracy is addressed. Basics of the sampling theory are outlined to show that the lower bound of signal sampling rate sufficient for signal reconstruction with a given accuracy is equal to the spectrum sparsity of the signal sparse approximation that has this accuracy....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physics in medicine and biology
دوره 49 22 شماره
صفحات -
تاریخ انتشار 2004