Spectrum reconstruction from dose measurements as a linear inverse problem.

نویسندگان

  • Benjamin Armbruster
  • Russell J Hamilton
  • Arthur K Kuehl
چکیده

There are three ways to determine the spectrum of a clinical photon beam: direct measurement, modelling the source and reconstruction from ion-chamber measurements. We focus on reconstruction because the necessary equipment is readily available and it provides independent confirmation of source models for a given machine. Reconstruction methods involve measuring the dose in an ion chamber after the beam passes through an attenuator. We gain information about the spectrum from measurements using attenuators of differing compositions and thicknesses since materials have energy dependent attenuation. Unlike the procedures used in other papers, we do not discretize or parametrize the spectrum. With either of these two approximations, reconstruction is a least squares problem. The forward problem of going from a spectrum to a series of dose measurements is a linear operator, with the composition and thickness of the attenuators as parameters. Hence the singular value decomposition (SVD) characterizes this operator. The right singular vectors form a basis for the spectrum, and, at first approximation, only those corresponding to singular values above a threshold are measurable. A more rigorous error analysis shows with what confidence different components of the spectrum can be measured. We illustrate this theory with simulations and an example utilizing six sets of dose measurements with water and lead as attenuators.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary temperature reconstruction in an inverse heat conduction problem using boundary integral equation method

‎In this paper‎, ‎we consider an inverse boundary value problem for two-dimensional heat equation in an annular domain‎. ‎This problem consists of determining the temperature on the interior boundary curve from the Cauchy data (boundary temperature and heat flux) on the exterior boundary curve‎. ‎To this end‎, ‎the boundary integral equation method is used‎. ‎Since the resulting system of linea...

متن کامل

Overcoming the ill-posedness through discretization in vector tomography: Reconstruction of irrotational vector fields

Vector tomography methods intend to reconstruct and visualize vector fields in restricted domains by measuring line integrals of projections of these vector fields. Here, we deal with the reconstruction of irrotational vector functions from boundary measurements. As the majority of inverse problems, vector field recovery is an ill posed in the continuous domain and therefore further assumptions...

متن کامل

On the nonnegative inverse eigenvalue problem of traditional matrices

In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.

متن کامل

Tracking Solutions of Time Varying Linear Inverse Problems

The reconstruction of a signal from only a few measurements, deconvolving, or denoising are only a few interesting signal processing applications that can be formulated as linear inverse problems. Commonly, one overcomes the ill-posedness of such problems by finding solutions which best match some prior assumptions. These are often sparsity assumptions as in the theory of Compressive Sensing. I...

متن کامل

Compressed Sensing, ASBSR-method of image sampling and reconstruction and the problem of digital image acquisition with lowest possible sampling rate

The problem of minimization of the number of measurements needed for digital image acquisition and reconstruction with a given accuracy is addressed. Basics of the sampling theory are outlined to show that the lower bound of signal sampling rate sufficient for signal reconstruction with a given accuracy is equal to the spectrum sparsity of the signal sparse approximation that has this accuracy....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 49 22  شماره 

صفحات  -

تاریخ انتشار 2004